close

標題:

Very hard differentiation

發問:

If y^(0) = e^(x^2) , y^(n) = differentiates y^(0) n times for all positive integers n , prove that y^(n+1) - 2xy^(n) - 2ny^(n-1) = 0

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

最佳解答:

y(0) = ex^2 Differentiate both sides with respect to x. y(1) = 2x ex^2 = 2xy(0) Differentiate both sides with respect to x by n times, by Leibniz's Theorem, y(n+1) = 2xy(n) + 2nC1y(n-1) Therefore, y(n+1) - 2xy(n) - 2ny(n-1) = 0 for all positive integers n.

其他解答:

創作者介紹
創作者 nzphddr 的頭像
nzphddr

nzphddr的部落格

nzphddr 發表在 痞客邦 留言(0) 人氣()